Lesson Plan

Name of the Faculty	:	Dr. Gayatri
Discipline	:	BCA
Semester	:	4th
Subject	:	Operating Systems (BCA 202 B)
Lesson Plan Duration	:	15 weeks(from January, 2018 to April, 2018)

Work Load (Lecture/Practical)per week(in hours): Lecture: 3 , Practical: NIL

Week	Theory		Practical	
	Lecture Day	Topic(including Assignment/Test)	Practical Day 1 st	Торіс
1st	1 st	Introduction to Operating System, its need		
	2 nd	operating System services, Early systems,	2 nd	
	3 rd	Structures - Simple Batch		
2nd	4 th	Multiprogrammed, timeshared	3 rd	
	5 th	Personal Computer, Parallel,	4 th	
	6 th	Distributed Systems, Real-Time Systems.		
3rd	7 th	Process concepts	5 th	
	8 th	Process states and Process Control Block.	6 th	
	9 th	CPU Scheduling: Scheduling criteria		
4th	10 th	Levels of Scheduling	7 th	
	11 th	Scheduling algorithms	8 th	
	12 th	Scheduling algorithms		
5th	13 th	Scheduling algorithms	9 th	
	14 th	Multipleprocessor scheduling.	10 th	
	15 th	Deadlock characterization,		
6th	16 th	Deadlock handling	11 th	
	17 th	Deadlock handling	12 th	
	18 th	Deadlock handling		
7th	19 th	Deadlock handling	13 th	
	20 th	Critical section problem	14 th	
	21 st	Critical section problem]	
8th	22 nd	Semaphores,	15 th	
	23 rd	Classical process co-ordination	16 th	

		problems and their solutions,		
	24 th	Classical process co-ordination		
		problems and their solutions,		
9th	25 th	Classical process co-ordination	17 th	
		problems and their solutions,		
	26 th	Inter-process Communications.	18 th	
	27 th	memory management of single-user		
10th	28 th	multiuser operating system	19 th	
	29 th	partitioning,	20 th	
	30 th	partitioning,swapping	1	
11th	31 st	Paging	21 st	
	32 nd	Segmentation	22 nd	
	33 rd	virtual memory		
12th	34 th	Page replacement Algorithms	23 rd	
	35 th	Page replacement Algorithms	24 th	
	36 th	File concept		
13th	37 th	Access methods	25 th	
	38 th	Directory Structure	26 th	
	39 th	File protection.		
14th	40 th	Allocation methods: Contiguous,	27 th	
		linked and index allocation.		
	41 st	Allocation methods: Contiguous,	28 th	
		linked and index allocation.		
	42 nd	Disk structure	+6	
15th	43 rd	Disk scheduling: FCFS, SSTF	29 th	
	44 th	SCAN, CSCAN	30 th	
	45 th	LOOK, C-LOOK.		